KORRELATION ZWISCHEN PHOTOELEKTRONEN-UND ELEKTRONEN-SPEKTREN—II' UNTERSUCHUNG AROMATISCHER *m*-SYSTEME MIT MODIFIZIERTEN PPP-SCF-CI-PARAMETERN

F. MARSCHNER* und H. GOETZ

Inst. für Organ. Chem., Lehrgebiet für Theor. Organ. Chemie, der Technischen Universität Berlin

(Received in Germany 7 November 1973; Received in the UK for publication 30 April 1974)

Zusammenfassung—Mit modifizierten PPP-SCF-CI-Parametern werden die Photoelektronen- und Elektronen-Sprektren von Naphthalin, Anthracen und Naphthacen im Rahmen experimenteller Messgenauigkeit gedeutet. Es wird gezeigt, dass Ionisations- bzw. Anregungs-induzierte Bindungslängenänderungen auf der Grundlage eines Strukturmodells des Benzols signifikant sind.

Abstract—By modified PPP-SCF-CI-parameters the PE- and UV-spectra of naphthalene, anthracene and naphthacene can be interpreted within the error-limit of experimental values. It is shown that ionisation- and excitation-induced bond-length changes on the basis of a structural model of benzene are significant.

Bei der Untersuchung von Korrelationen zwischen Photoelektronen-(PE-) und UV-spektroskopischen Befunden am Benzol (1)¹ haben wir das PPP-SCF-CI-Verfahren so modifiziert, dass eine zweifelsfreie Zuordnung von vertikalen Ionisationspotentialen Iv,m und Anregungsenergien Ev,m möglich wurde. Wir erhielten optimierte Parameter, die eine nahezu quantitative Übereinstimmung zwischen theoretischen und experimentellen Daten lieferten. Ein Fundamental-Problem in der Deutung von PE- und UV-Spektren mit Hilfe semiempirischer MO-Methoden ist die Gewinnung geeigneter Parametersätze.² Deshalb haben wir jetzt die Anwendbarkeit dieser "Benzol"allgemeine Parameter untersucht. Als Beispiele wählten wir dazu die π -Elektronensysteme des Naphthalins (2), (3) und Naphthacens (4) Anthracens (Symmetrieklasse D_{2h}]. Einer besonderen Prüfung bedurfte in diesem Zusammenhang die nach dem Koopmans Theorem³ geforderte Korrelation zwischen den SCF-Orbitalenergien ϵ_m und den experimentellen I_{v,m}-Werten, sowie die zwischen den berechneten Anregungsenergien ΔE_m und den entsprechenden experimentellen E_{v.m}-Werten mit der Vorraussetzung des Franck-Condon Prinzips.⁴ Dabei haben wir analog Heilbronner die Modellkonzeption der partiellen Bindungs-lokalisierung⁵ verwendet, die bislang mit gutem Erfolg auf die Korrelation von HMO-Orbitalenergien und L's von isokonjugierten Kohlenwasserstoffen angewendet wurde.6.7,8

rametersatz vollständig beschrieben^{9.10}: 1) das Valenzzustandsionisationspotential $W = W_{\mu}$ $(\mu =$ 1,..., N, N Anzahl der Zentren), 2) das Resonanzintegral $\beta = \beta_{\mu\nu}$ (eindlich nur für μ und ν benachbart) und 3) die Elektronenwechselwirkungsparameter $\gamma = \gamma_{\mu\mu}$ (Zweielektroneneinzentrum-) (Zweielektronenzweizentren-Wechselwir-Yuu kungsintegrale). Ind der 1. Mitteilung¹ haben wir für die Parameter-Bestimmung von 1 zur iterativen Lösung der dort angegebenen Gleichungen (1) und (2) als Anfangsparameter nur einen von Pariser¹¹ beschriebenen Satz verwendet. Zur weiteren Prüfung des Rechenverfahrens sind wir jetzt zusätzlich wie folgt vorgegangen: Sämtliche in Tabelle 2 der Lit.¹ angegebenen Literatur-Parameter W und γ wurden vollständig mit den dort gleichfalls angeführten verschiedenen Literatur-Werten für β , γ_0 , γ_m und γ_p kombiniert. Diese unterschiedlichen Sätze sind als Anfangsparameter mit den Zielwerten der Komb. 1a (Tabelle 1 in Lit.¹) im Iterationsverfahren verwendet worden. Es zeigt sich, dass dabei als Endparameter W und β stets numerisch gleich, also unabhängig von der Wahl des Satzes der Anfangsparameter erhalten werden. Die γ-Endparameter sind dagegen von der Wahl des Anfangsparameter-Satzes numerisch abhängig. Es ergibt sich jedoch, dass unabhängig von dieser Wahl zwischen ihnen stets folgende lineare Beziehungen auftreten:

Rahmen des PPP-Verfahrens durch folgenden Pa-

A. PARAMETRISIERUNG

Die π -Elektronensysteme 1 bis 4 werden im

$$\gamma = \gamma + 5.814$$

$$\gamma_o = \gamma_p + 1.976$$
 (1)

$$\gamma_m = \gamma_p + 0.749$$

Tabelle 1. Für 4 verschiedene Werte Z_{μ} für 1 berechnete **PPP-Parameter** (Nr. 1 bis Nr. 4) in [eV]

Parameter	Гµи	Nr. 1*	Nr. 2	Nr. 3	Nr. 4
	0	10.776	10.710	10.384	12.702
γ.	1.4	6.937	6.871	6.549	8.865
γm	2.424	5.710	5.644	5.319	7.637
Υp	2.8	4-961	4.896	4.569	6.888
Ž,	_	3.4	2.8	1.4	0.8
Ă,		0.444	0.510‡	0∙836¶	-0.482
W_ †		-9.107	-9.107	- 9.107	- 9.107
βμν	1.4	- 2.392	- 2.392	- 2.392	- 2.392

*Aus Tabelle 2 in Lit.¹ (Komb. 1a); †wird in Lit.¹ diskutiert; ‡0·58[eV] in Lit.¹³; ¶0·69[eV] in Lit.¹⁴

(in [eV]; o-, m- und p-ständige Zentren in 1). Zur Berechnung von $\gamma_{\mu\nu}$ -Werten für interatomare Abstände $r_{\mu\nu} \ge 2.8$ Å wurde von Roothaan und Pariser¹¹ der Ausdruck

$$\begin{split} \gamma_{\mu\nu} &= \eta / \rho_{\mu} \nu - 3\eta / \rho_{\mu\nu}^{3} + 81\eta / 4\rho_{\mu\nu}^{5} \\ \eta &= Ze^{2}/2a_{0} \\ \rho_{\mu\nu} &= Zr_{\mu\nu}/2a_{0} \\ Z &= (Z_{\mu} + Z_{\nu})/2 \end{split}$$
(2)

 $(Z_{\mu}, Z_{\nu}: \text{ eff. Kernladungszahlen; } e^2/2a_o = 13.602$ [eV]) angegeben. Da man bei 1 allgemein $r_{12} = 1.4 \text{ Å}$ vorraussetzt, ergibt sich mit $r_{14} = 2.8 \text{ Å}$, dass γ_p nach (2) als Funktion von Z_{μ} berechnet werden kann. Dann sind nach (1) vollständige Sätze von γ -Werten festgelegt (s. Tabelle 1). Die in Tabelle 1 angegebenen Elektronenaffinitäten A_{μ} ($A_{\mu} = I_{\mu} - \gamma$)¹² wurden mit dem Valenzzustandsionisationspotential $I_{\mu} = 11.22 \text{ [eV]}^{11}$ ermittelt.

Der Vergleich in Tabelle 1 zeigt, dass die A_{μ} -Werte der Sätze Nr. 2 und 3 mit denen aus der Literatur näherungsweise übereinstimmen. Der Wert $Z_{\mu} = 2.8$ wurde nach Burns¹⁵ berechnet, der Wert 1.4 ist der des entsprechenden Slater-Orbitalexponenten.

Für die $\gamma_{\mu\nu}$'s im Bereich $r_{\mu\nu} \leq 2.8$ Å wird üblicherweise eine Parabelnäherung $[\gamma_{\mu\nu} = (\gamma_{\mu\mu} + \gamma_{\nu\nu})/2 + a'r_{\mu\nu} + b'r_{\mu\nu}^{2}]^{11,12}$ angenommen. Zwischen den nach dieser Beziehung berechneten γ_{0} -(γ_{m} -) Werten und denen der Tabelle 1 ergeben sich jedoch Abweichungen von 9·3 (1·2) %. Zur besseren numerischen Anpassung an unsere Werte (Tabelle 1) haben wir daher versuchsweise die $\gamma_{\mu\nu}$'s als Polynom $\gamma_{\mu\nu} = a_0 + a_1r_{\mu\nu} + a_2r_{\mu\nu}^2 + a_3r_{\mu\nu}^2$ angesetzt. Danach erhält man mit den Werten $r_{11} = 0$ (γ_{11}), $r_{12} = 1.4$ (γ_{12}), $r_{13} = 2.424$ (γ_{13}) und $r_{14} = 2.8$ Å (γ_{14}) vier Gleichungen, in denen die $\gamma_{\mu\nu}$'s durch die Beziehungen (1) und (2) (mit $r_{14} = 2.8$ Å) substituiert werden. Nach Bestimmung von a_0 bis a_3 ergibt sich so die Gleichung:

$$\gamma_{\mu\nu}(\mathbf{r}_{\mu\nu}, \mathbf{Z}_{\mu}, \mathbf{Z}_{\nu}) = 10.956 - 8.816(\mathbf{Z}_{\mu} + \mathbf{Z}_{\nu})^{-2} + 34.014(\mathbf{Z}_{\mu} + \mathbf{Z}_{\nu})^{-4} - 5.090\mathbf{r}_{\mu\nu} + 2.280\mathbf{r}_{\mu\nu}^{2} - 0.430\mathbf{r}_{\mu\nu}^{3}$$
(3)

Für (3) postulieren wir den Gültigkeitsbereich $0 \le r_{\mu\nu} \le 2.8$ Å. Bei $r_{\mu\nu} = 0$ und $Z_{\mu} = Z_{\nu} = Z$ wird γ_{11} nur noch von Z abhängig, mit einem Funktions-Minimum bei Z = 1.4.

Für das Resonanzintegral β zwischen zwei 2p_z-AO's im Abstand r_µ, lässt sich analog zu Lit.¹⁰ aus den Kraftkonstanten der A₁₄- und B₂₀-Schwingungen von 1 (k_{A14} = 7·62 × 10⁵, k_{B24} = 3·94 × 10⁵ [dyn · cm⁻¹])^{16.17} mit β = -2·392 [eV] (s. Tabelle 1) für eine Benzol-Modell-Bindung (r_{µν} = 1·4 Å) die Funktion

$$\beta_{\mu\nu}(\mathbf{r}_{\mu n}) = -52 \cdot 522 \mathrm{e}^{-2 \cdot 206 r_{\mu\nu}} \tag{4}$$

(in [eV]; μ , ν benachbart; $r_{\mu\nu}$ in [Å]) ermitteln.

Die bei einem vertikalen Ionisations-(Anregungs)-Prozess eines Moleküls möglicherweise Änderungen auftretenden $\delta r_{\mu\nu}$ in den Gleichgewichtsabständen r_µ, geben zu einer Korrektur $\delta \epsilon_m$ der SCF-Orbitalenergie ϵ_m Anlass. Mit Hilfe der Modellkonzeption der partiellen Binsich dungslokalisierung³ lassen durch Störungsrechnung 1. Ordnung im PPP-Verfahren die $\delta r_{\mu\nu}$'s den auf ein Standardmodell bezogenen Änderungen in den SCF-Bindungsordnungen benachbarter AO's nach

$$\delta \mathbf{r}_{\mu\nu} = \mathbf{t}_{\mu\nu} (\mathbf{P}_0 - \mathbf{P}_{\mu\nu}) \tag{5}$$

(μ , ν benachbart; $P_0 = 2/3$ in 1) bestimmen. Ein solcher Ansatz beruht auf der realistischen Annahme einer linearen Abhängigkeit von Bindungslänge und Bindungsordnung.¹⁸ Analog zu (5) lassen sich die Störungen δZ_{μ} in der effektiven Kernladungszahl Z_{μ} mit den SCF-Elektronnettoladungen nach

$$\delta Z_{\mu} = t_{\mu} (\mathbf{n}_{\mu} - \mathbf{P}_{\mu\mu}) \tag{6}$$

erfassen. Da die π -Systeme 2 bis 4 alternierend sind, ist $\delta Z_{\mu} = 0$ wegen $n_{\mu} = P_{\mu\mu} = 1$ und man erhält daher aus (6) keinen Beitrag zu $\delta \epsilon_m$. Zur Erreichung der Selbstkonsistenz der korrigierten ϵ_m^{SCF} müsste im konsequenten PPP-Verfahren nach jeder Iteration $r_{\mu\nu}$ um $\delta r_{\mu\nu}$ korrigiert werden. Die Schwierigkeit wäre dann, optimale $t_{\mu\nu}$'s zu finden, was die Rechenzeit nicht unerheblich vergrössern würde. Zusätzlich ist bekannt, dass die Bindungslokalisierung 1. Ordnung im SCF-Schema für 2 Eigenwerte und -Vektoren liefert, die sich nicht gravierend von denen des HMO-Schemas unterscheiden.⁵ Deshalb erschien es uns sinnvoll zu versu- $\epsilon_{\rm m}^{\rm SCF}$ 'S chen, die mit den nach (5) in Störungsrechnung 1. Ordnung ermittelten $\delta \epsilon_m$ -Werten zu korrigieren. Dabei haben wir $t_{\mu\nu} = t =$ 0.446 Å verwendet. Dieser Wert lässt sich durch Vergleich der Koeffizienten der für $\delta \epsilon_m$ im SCF- und HMO-Schema zu entwickelnden Gleichungen aus der von Heilbronner⁶ an benzenoiden KW-Stoffen ermittelten Regressionskonstanten b = 5.106 [eV] berechnen.

B. ERGEBNISSE UND DISKUSSION

Die Berechnungen erfolgten so, dass zunächst die ϵ_m -Werte mit den in Tabelle 1 (Nr. 2 u. 3) und den durch (2) bis (4) bestimmten Parametern ermittelt wurden. Um den Einfluss von Z zu untersuchen, wurden zwei Testrechnungen für Z = 2.8 und 1.4 durchgeführt [Tabelle 2; $\epsilon_m(a)$ und $\epsilon_m(b)$].

Es zeigt sich, dass Z = 1.4 (r = 0.9752) eine geringfügige Verbesserung der Korrelation zweischen ϵ_m und $I_{v,m}$ gegenüber Z = 2.8(r = 0.9745) bewirkt, was dem für $r_{\mu\nu} = 0$ gefundenen Extremwert von (3) entspricht. Deshalb wurde in allen weiteren Berechnungen Z = 1.4 verwendet. $\epsilon_m(c)$ wurde unter Anwendung von (5) mit t = 0.446erhalten. Eine lineare Varianzanalyse nach $I_{v,m} =$ a' + b' $\epsilon_m(c)$ mit 22 Wertepaaren von 1 bis 4 ergibt bei 90% Sicherheit hohe Signifikanz (a' = -0.1471 ± 0.2666; b' = 1.0235 ± 0.0265; r = 0.9919), sodass im Rahmen des Modells die Gültigkeit von Koopmans' Theorem gewährleistet ist. Es ist interessant, dass die durch das Modell beschriebene Ionisations-induzierte Bindungslängenänderung so gravierend sein kann, dass bei 3 die Sequenz der Orbitale b₁₀ (m = 4) und b₃₈ (m = 5) sowie bei 4 die der Orbitale b₃₈(m = 2) und b₁₀(m = 3) vertauscht wird. In solchen Fällen kann dann die Zuordnung der I_v's problematisch sein, sofern keine strukturellen Änderungen bei der Ionisation berücksichtigt werden.

Die Berechnung der Triplett- und Singulett-

Tabelle 2. Experimentelle vertikale Ionisationspotentiale $I_{v,m}$ und Energien der bindenden SCF-Orbitale ϵ_m in [eV]

Verb Nr.	m	I, Lit. *		Symm.	$\epsilon_{m}(a)$	€ _m (b)	ε _m (c)
	1	8.31.	8.15	a	- 7.989	- 8.002	- 8.192
	2	9.04	8.88	b	- 9.051	- 9.062	- 8.820
2	3	10.15.	10.10	 b	- 10.231	- 10.223	- 10.097
-	4	11.11.	11.00	b.,	- 11.186	- 11.180	- 11.198
	5	12.45,	12.36	b ₁₀	- 13-059	- 13.060	- 12.644
		Lit.*	Lit. ^{8,7}	· · · · · · · · · · · · · · · · · · ·			
	1	7.44,	7.41	b34	- 7.259	- 7.282	- 7.477
	2	8.61,	8.55	b ₂ ,	- 8·937	- 8 ∙955	- 8.602
	3	9.24,	9.16	a,	- 9.276	- 9.273	- 9.290
3	4	10.26,	10.16	b	- 10.503	- 10.560	- 10.435
	5			b.,	- 10-585	- 10.576	- 10.426
	6	(11.88)		b ₂₈	- 12.217	- 12.212	- 11-911
	7	(12.69)		b _{tu}	- 13-343	- 13-344	- 12.784
		Lit.'	Lit.6.8				
	1	6.95,	7.01	a	- 6.808	- 6.838	- 7.002
	2		8.41	b34	- 8.538	- 8.542	- 8.622
	3		(8.60)	b,,,	- 8.868	- 8 ·890	- 8.475
	4		9.56	au	9.902	- 9.893	9.828
4	5		(9.70)	b28	- 10.060	- 10.061	- 9.909
	6		10-25	b.,	- 10.750	- 10.740	- 10-587
	7		(11.20)	biu	- 11-551	- 11-545	- 11-278
	8		(12.00)	b28	- 12.738	- 12.734	- 12.273
	9			b _{tu}	- 13-477	- 13.479	- 12.853

*Die He-I-(584-Å)-PE-Spektren wurden auf einem PS-16-Spektrometer der Fa. Perkin-Elmer Ltd., Beaconsfield (England) mit einer Genauigkeit von ± 0.03 [eV] gemessen.

Tabelle 3. Experimentelle (${}^{3}E_{m}$) und berechnete (${}^{3}\Delta E_{m}$) Triplett-Energien in [eV]. ${}^{3}\Delta E_{m}$ [A]: Unter Berücksichtigung von vier Konfigurationen mit ϵ_{m} (b); f: Oszillatorstärke nach Mulliken und Rieke;²³ Pol: Polarisationsrichtung bezogen auf eine x,y-Molekül-Ebene und der x-Achse als Längsachse des Moleküls; ${}^{3}\Delta E_{m}$ [B]: nach einer MIM-Methode ermittelt;²⁴ ${}^{3}\Delta E_{m}$ [C]: von Pariser¹¹ berechnet

Verb Nr,	Platt ²⁰	³ E _m	Symm.	³ ∆E _m [A]	f	Pol.	³ ∆E _m [B]	³ ΔE _m [C]
2	°L.	2.6421	³ B _{2u}	2.757	0.279	y	2.640	2.180
3	۲L,	1.85 ²¹ , 1.82 ²²	³ B _{2u}	1.885	0.273	ý	2.233	1·660
4	'L,	1·27 ^{21,22}	³ B _{2u}	1.157	0.279	y	1.631	1.103

3162

Tabelle 4a. Experimentelle (${}^{1}E_{m}$) und berechnete (${}^{1}\Delta E_{m}$) Singulett-Energien in [eV]. ${}^{1}\Delta E_{m}$ [A]: Mit vollständiger Konfigurationswechselwirkung unter Verwendung von (5) und ϵ_{m} (c); f[A]: Oszillatorstärke gemäss Lit.³ und korrigiert mit einem multiplikativen Faktor 0.53 (vgl. Lit.³⁰); Pol: Polarisationsrichtung (s. Tabelle 3); ${}^{1}\Delta E_{m}$ [B]: Unter Verwendung von ϵ_{m} (b)

Verb Nr.	m	Platt ²⁶	¹ E _m	f.xp		Symm.	'ΔE _m [A]	f[A]	Pol.	'ΔE _m [B]
	1	¹ L _b	3.99, 3.97	0.002	Lit.25,26	'B ₃₄	3.953	0		4.008
	2	¹ L	4.51, 4.29	0.18	Lit.25,26	¹ B _{2u}	4.742	0.074	У	4.455
2	3	'B,	5.62	1.70	Lit.25,26	¹ B _{3u}	5.783	1.151	x	5.837
	4	¹ В,	5.90-6.20	0.21	Lit.26	⁺B₂u	5-902	0.434	у	6.297
	5		7.40-7.50	(0.60)	Lit.26	¹ B ₂₁₁	7.886	0-423	y	8.146
	1	'L,	3.48, 3.27	0.10	Lit. ^{27,26}	¹ B _{2u}	3.812	0.133	y	3.482
	2		3.47		Lit.28	¹ B _{3u}	3.433	0	•	3.588
	3	'Β _b	4-92, 4-83	2.28	Lit.27,26	'B ₃₀	5.062	1.582	х	5-218
	4					'B _{2u}	5.206	0.006	у	5.178
3	5	'C₅(?)	5.60, 5.61	0.58	Lit. ^{27,26}	¹ B _{2u}	5.662	0.360	ÿ	6.280
	6					¹ B _{3u}	6·918	0.020	x	7.282
	7					¹ B _{3u}	7.288	0·018	x	7.513
	8	¹ B _a (?)	6.60-670		Lit.26	¹ B ₂₀	7.496	0.534	У	7.549
	1	¹ L _a	2.80, 2.62	0.08	Lit. ^{29,26}	¹ B _{2u}	3.177	0.158	 y	2.892
	2		3.22		Lit.28	'B _{2u}	3.109	0	-	3.348
	3		4.23		Lit.28	¹ B _{2u}	4.719	0.292	у	4.617
	4	'B₅	4.51, 4.55	1.85	Lit. ^{29,26}	¹ B _{3u}	4.522	1.924	x	4.764
4	5	'C₀	5.40	0.58	Lit.26	¹ B _{2u}	5.549	0.284	у	6-203
	6	¹ B _• (?)	5.89, 5.87	0.45	Lit.29.26	¹ B _{2u}	6.532	0.095	ÿ	6.580
	7		6.62	0.27	Lit.26	¹ B ₃₀	6.687	0.010	x	6.933
	8					¹ B _{3u}	6.875	0.077	x	7.161
_	9		6.89	0.68	Lit.26	¹ B _{2u}	6.968	0.537	У	6-993

Anregungsenergien ${}^{3}\Delta E_{m}$, ${}^{1}\Delta E_{m}$ erfolgte mit Hilfe des CI-Verfahrens unter Berücksichtigung einfach angeregter Konfigurationen. Als Basisorbitale wurden die SCF-MO's der Eigenwerte $\epsilon_{m}(b)$ und $\epsilon_{m}(c)$ verwendet.

Tabelle 3 zeigt, dass die experimentellen ${}^{3}E_{m}$ durch die ${}^{3}\Delta E_{m}$ [A]-Werte mit einer mittleren Abweichung von ± 0.08 [eV] (4.94%) gegenüber einer Abweichung von 14 bis 16% bei den anderen Rechenmethoden reproduziert werden. Eine Berücksichtigung von (6) brachte keine Verbesserung dieser Korrelation.

Der Vergleich in Tabelle 4a zeigt, dass $^{1}\Delta E_{m}[A]$ -Werte die (Berücksichtigung von Bindungs-Längenän derungen nach (5)) die ${}^{t}E_{m}$ -Werte für >4.7 [eV] besser annähern (mittlere Gesamt-Abweichung aller 22 Werte von 1 bis 4 $F = \pm 0.1840 \ [eV], \ 3.85\%$) als die $^{1}\Delta E_{m}[B]$ -Werte $(F = \pm 0.3428 \text{ [eV]}, 6.53\%)$. Der umgekehrte Befund tritt bei ¹E_m-Werten < 4.7 [eV] auf. Offensichtlich beschreibt das Strukturmodell 1 die energetisch niedrigen Triplett- und Singulett-Anregungszustände (vgl. Tabelle 3 u. 4a) von 2 bis 4 zufriedenstellend. während in den höheren Bindungslängenänderungen signifikant werden.

Tabelle 4b. Nach verschiedenen Methoden berechnete (${}^{L}\Delta E_{m}$) Singulett-Energien in [eV]. ${}^{L}\Delta E_{m}$ [C]: Von Pariser¹¹ berechnet; ${}^{L}\Delta E_{m}$ [D]: Mit Störungsrechnung 1. und 2. Ordnung berechnet²⁸

Verb Nr.	m	'ΔE _m [C]	f[C]	'ΔE _m [D]	f[D]	Pol[D]
	1	4.02	0	3.52	0	
	2	4.49	0.256	4.27	0.049	у
2	3	5.94	2.115	5.54	1.370	x
	4	6.31	0.699	5.48	0.608	У
	5	8 <u>·</u> 18	0.851	7.07	0.618	У
	1	3.65	0.386	3.08	0.099	y
	2	3.71	0	3.09	0	•
3	3	5.50	3.230	4.89	2.016	x
	5	5.25	0.091	5.35	0.324	У
	8	7.84		5.80	1.160	У
	1	3.11	0.440	2.56	0.110	y
	2	3.56	0	2.85	0	•
	3	4.68	0.160	4-83	0.141	у
4	4	5.09	3.780	4.45	2.710	x
	5	6-54	0.001	4.87	0.998	у
	6	6.94	1.200	5.81	3.290	y
	8	7.19	0.086	6·96		X

Dieses Ergenbnis deckt sich mit den PE-Befunden. Ferner erscheint wichtig, dass die mittlere Abweichung der ${}^{1}\Delta E_{m}[A]$ -Werte für >4.7 [eV] und der ${}^{1}\Delta E_{m}[B]$ -Werte für <4.7 [eV] (± 0.1261 [eV], 2.40%) im Vergleich zu den Abweichungen in den ${}^{1}E_{m}$ -Werten (± 0.1290 [eV], 2.64%) kleiner ist. Die in Tabelle 4b angeführten Literatur Werte zeigen mit [C]: ± 0.5160 [eV] (10.22%) und [D]: ± 0.3298 [eV] (6.54%) erheblich grössere Abweichungen. Diese Resultate beweisen, dass dich das PP-SCF-CI-Verfahren mit (5) auf der Basis des "Benzol"-Strukturmodells so parametrisieren lässt, dass die vorhandenen ${}^{1}E_{m}$ -Werte hervorragend reproduziert werden.

Danksagung—Der Stiftung Volkwagenwerk, der Deutschen Forschungsgemeinschaft sowie auch der Gesellschaft von Freunden der Technischen Universität Berlin sind wir für die Förderung und Unterstützung dieser Arbeit zu grossem Dank verpflichtet. Frau Dr. H. Juds danken wir sehr herzlich für die Durchführung der PE-Messungen.

Rechendetails—Für die numerischen Berechnungen haben wir die CD-6500-Anlage des Recheninstituts der TU Berlin benutzt. Die Programme sind von uns entwickelt worden.

LITERATUR

- ¹I. Mitteilung: F. Marschner und H. Goetz, *Tetrahedron* 29, 3105 (1973)
- ²K. Jug, Theor. chim. Acta 14, 91 (1969)
- ³T. Koopmans, Physica 1, 104 (1934)
- ⁴J. Franck, Trans. Faraday Soc. 21, 536 (1925)
- ³G. Binsch, E. Heilbronner und J. N. Murrell, *Mol. Phys.* 11, 305 (1966)
- ⁶F. Brogli und E. Heilbronner, Angew. Chem. 84, 551 (1972)

⁷F. Brogli und E. Heilbronner, *Theor. chim. Acta* **26**, 289 (1972); und dort zit. Lit.

- ⁹P. A. Clark, F. Brogli und E. Heilbronner, Helv. chim. Acta 55, 1415 (1972)
- ⁹J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953)
- ¹⁰R. Pariser und R. G. Parr, J. Chem. Phys. 21, 466, 767 (1953)
- ¹¹R. Pariser, Ibid. 24, 250 (1956)
- ¹²R. Pariser, Ibid. 21, 568 (1953)
- ¹³H. O. Pritchard und H. A. Skinner, Chem. Rev. 55, 745 (1955)
- ¹⁴R. S. Mulliken, J. Chem. Phys. 2, 782 (1934)
- ¹⁵G. Burns, *Ibid.* 41, 1521 (1964)
- ¹⁶R. D. Mair und D. F. Hornig, *Ibid.* 17, 1236 (1949)
- ¹⁷D. H. Whiffen, *Phil. Trans. Roy. Soc. (London)* A248, 17 (1955)
- ¹⁶C. A. Coulson und R. Taylor, Proc. Phys. Soc. (London) A65, 815 (1952)
- ¹⁹D. L. Davies und P. L. Goldsmith, Statistical Methods in research and production, London: Oliver and Boyd, 1972, S. 244 f.
- ²⁰J. R. Platt, J. Chem. Phys. 17, 470, 484 (1949)
- ²¹S. F. Mason, Quart. Rev. (London) 15, 287 (1961)
- ²²G. Porter und M. W. Windsor, *Proc. Roy. Soc.* (London) A245, 238 (1958)
- ²³R. S. Mulliken und C. A. Rieke, *Rep. Progr. Physics* 8, 231 (1941)
- ²⁴A. Gamba, G. Tantardini und M. Simonetta, *Theor.* chim. Acta 23, 330 (1972)
- ²⁵E. M. F. Roe in DMS-UV-Atlas organischer Verbindungen, E1/1, Butterworth/London und Verlag Chemie/Weinheim/Bergstr. (1967)
- ²⁶J. R. Platt, Systematics of the electronic spectra of conjugated molecules, J. Wiley, New York (1964)
- ²⁷H.·H. Perkampus und L. Pohl in DMS-UV-Atlas, E2/1; vgl. auch Lit.²⁵
- ²⁸J. F. Gouyet und M. T. Prat, *Theor. chim. Acta* 26, 89 (1972); und dort zit. Lit.
- ²⁶H.-H. Perkampus und C. Schmiele in DMS-UV-Atlas, E4/2; vgl. auch Lit.²⁵
- ³⁰M. L. Bailey, Theor. chim. Acta 26, 87 (1972)